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Background. When planning a study to estimate disease
prevalence to a pre-specified precision, it is of interest to
minimize total testing cost. This is particularly challenging in
the absence of a perfect reference test for the disease because
different combinations of imperfect tests need to be consid-
ered. We illustrate the problem and a solution by designing
a study to estimate the prevalence of childhood tuberculosis
in a hospital setting. Methods. All possible combinations of
3 commonly used tuberculosis tests, including chest X-ray,
tuberculin skin test, and a sputum-based test, either culture
or Xpert, are considered. For each of the 11 possible test
combinations, 3 Bayesian sample size criteria, including

average coverage criterion, average length criterion and mod-
ified worst outcome criterion, are used to determine the
required sample size and total testing cost, taking into con-
sideration prior knowledge about the accuracy of the tests.
Results. In some cases, the required sample sizes and total
testing costs were both reduced when more tests were used,
whereas, in other examples, lower costs are achieved with
fewer tests. Conclusion. Total testing cost should be formally
considered when designing a prevalence study. Key words:
sample size; cost; diagnostic test accuracy; prevalence stud-
ies; diagnostic studies; Bayesian methods. (Med Decis
Making XXXX;XX:xx–xx)

When designing a study to estimate the preva-
lence of a disease for which no perfect diag-

nostic test is available, multiple imperfect tests may
be employed. These tests are likely to differ from
each other not only in terms of sensitivity and spe-
cificity but also in terms of cost and ease of imple-
mentation. Previous research has provided methods
for sample size determination in the absence of a
perfect test, demonstrating that use of multiple tests
can increase the testing accuracy and decrease the
sample size required in such prevalence studies.1–3

However, test costs have not been formally consid-
ered in these studies. The budget for a prevalence
study is an important component of study design,
and the total testing cost, which is affected by both
the particular choice of tests used and the required
sample size, is a key component of the total budget.
Therefore, it is of interest to develop methods for
designing an optimal prevalence study such that a
desired precision of the prevalence estimate is
achieved with the smallest total testing cost. We
will provide a general framework for such
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situations, and illustrate the methods for estimating
the prevalence of childhood tuberculosis (TB) in a
hospital setting in South Africa. We assume that all
participants in this hospital-setting survey are sus-
pected to have TB based on clinical symptoms and
will be evaluated with the same tests.

The Challenge of Estimating the Prevalence of
Childhood TB

Childhood TB is an important health concern
worldwide with an estimated half to one million inci-
dent cases per year and 140,000 TB deaths in 2015.4,5

Estimating the prevalence of childhood TB in differ-
ent settings (including a hospital setting for high-risk
cases) is challenging but important for understanding
and curtailing the rising trend of childhood TB. One
of the major challenges is the lack of a gold standard
test for childhood TB.6–9 In clinical practice, combina-
tions of culture, Xpert MTB/RIF (Xpert), smear micro-
scopy (smear), chest X-ray (CXR) and tuberculin skin
test (TST) are currently recommended.10 However,
none of these tests or any combination of them has
perfect sensitivity or specificity.

Sample Size Determination for a TB Prevalence
Study

Although a handbook providing advice on how
to design and carry out a prevalence survey of pul-
monary TB in adults has been published by the
World Health Organization,11 no guidelines are
available specifically for sample size determination
when no perfect reference test is available, includ-
ing for childhood TB. According to the WHO hand-
book, when a perfect reference test is available, the
sample size for a TB prevalence survey based on a
simple random sample can be calculated as

N51:962 1� pg

d2pg

� �
; (1)

where 1.96 is the Z score from a normal density
required for 95% coverage, pg is the ‘‘prior guess’’ of
the true population prevalence of TB, and d is the
relative precision of the prevalence study, defined as
d5

w=2
p

, where w is the width of the confidence inter-
val and p is the true population prevalence (replaced
by pg at the design stage). The value of d is recom-
mended to be between 0.2 and 0.25 for a prevalence
survey for TB in adults. For example, d = 0.2 means
that the 95% confidence interval (CI) around the esti-
mated prevalence p is ( p-0.2p, p+0.2p ).

This method of sample size calculation has
important deficiencies, particularly when there
is no perfect reference test. First, this approach
assumes that the testing strategy has perfect sensi-
tivity and specificity, which is not reasonable for
childhood TB. In turn, assuming perfect accuracy in
the absence of truly perfect tests can lead to poor
sample size suggestions.1 Second, the uncertainties
about the sensitivities and specificities of these tests
are ignored, even though these contribute addi-
tional uncertainty to the prevalence estimates. In
the case when these uncertainties are too large or
the desired precision of the prevalence estimate is
too small, the desired precision can be unachievable
even with an infinite sample size.2,3 Third, the
‘‘prior guess’’ of the true population prevalence of
TB used in the calculation is only a point estimate.
However, there is always some uncertainty in our
knowledge about TB prevalence in the population
of interest, otherwise a prevalence study would not
be needed. A slight change in the ‘‘prior guess’’ of
the TB prevalence could lead to a considerable
change in the sample size. For example, according
to (1) above, when d = 0.2, changing pg from 100 to
80 per 100,000 population increases the sample size
from 95,944 to 119,944; an increase of 25%.

In this paper, we will use a Bayesian approach to
design a childhood TB prevalence study in a hospi-
tal setting; this has several advantages over other
sample size methods in designing prevalence stud-
ies. For example, Bayesian sample size methods
consider the inaccuracies as well as the uncertain-
ties in the accuracies of the diagnostic tests, leading
to more realistic sample sizes. In addition, the
uncertainty about the prevalence is also acknowl-
edged. We will also take the testing costs into
account to find the optimal testing strategy, suggest-
ing which tests to use and how large the sample
size should be, such that the target precision is
attained at minimum cost.

SUGGESTED TESTS FOR TB AND THEIR
PROPERTIES

We will follow the recommendations of Graham
and others10 to use culture, Xpert, CXR and TST as
the potential diagnostic tests to design a childhood
TB prevalence study within a hospital setting in
South Africa. Though smear microscopy is widely
used in the survey of TB in adults, it has a poor sen-
sitivity rate of 16% to 30% in children12 and is not
recommended. Since both culture and Xpert are
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based on sputum and are considered to be highly
correlated, to minimize the collection of redundant
information, they will not be used together.
With this constraint, any combination of one of the
sputum-based tests, the image-based CXR and the
immune-based TST can reasonably be assumed to
be independent conditional on the true disease
state, the so-called ‘‘conditional independence’’
assumption in the diagnostic testing literature.13

The available prior information about the sensi-
tivities and specificities of culture, Xpert, CXR, and
TST in detecting childhood TB are given in Table 1.
These estimates were obtained from a latent class
model fit to data from a cohort of hospitalized chil-
dren with suspected TB in South Africa.12 Culture
has the highest specificity but the lowest sensitivity
in children, and the sensitivities and specificities of
CXR and TST are both relatively low. In addition,
there are considerable uncertainties in the sensitiv-
ities and specificities of these tests, as indicated by
the widths of the 95% credible intervals (CrI). In the
methods described below, we will show how these
uncertainties are quantified into Beta prior distribu-
tions over the sensitivity and specificity of each
test, to input into the sample size calculations.

The accuracies and unit costs of these tests may
vary in different settings. In this illustration, we will
use the reported costs of these tests (in US dollars) in
South Africa as our test accuracy estimates are based
on data from this region,14–17 as listed in Table 1.
Different values of the unit costs of culture and Xpert
are available in the literature. We used $5.12 as the
unit cost of culture in our main analysis and carried
out a sensitivity analysis to increase the unit cost to
$14.89. The difference in unit cost arises because
solid cultures are cheaper than liquid cultures. We
used $14.93 as the unit cost of Xpert in our analysis.

With 4 available tests and the constraint that 2 of
them cannot be used together, there are 11 possible
combinations: four single-test combinations, five 2-test
combinations, and two 3-test combinations. For each
combination, the required sample size and total testing
costs will be calculated, and the optimal combination,
sample size, and total cost will be determined.

METHODS

Bayesian Sample Size Criteria

For each test combination, we will use Bayesian
methods proposed by Dendukuri et al.3 to determine
the required sample size for the TB prevalence study.
This method assumes that the diagnostic tests are

conditionally independent. In our case, we antici-
pate that culture and Xpert are conditionally depen-
dent as both are microbiological tests aimed at
detecting the presence of TB bacteria in the test sam-
ple. However, both these tests can reasonably be
assumed to be independent of CXR, which is based
on imaging, and TST, which is based on the child’s
immune response to TB. Further, these assumptions
were satisfied in the earlier latent class analysis.12

To implement our methods, the sensitivities and spe-
cificities of the tests in Table 1 were used as the prior
information. In addition, a uniform prior (Beta(1,1))
was used for the prevalence of TB.

We applied 3 different Bayesian sample size cri-
teria3,18,19 to illustrate the range of sample sizes
resulting from using a less strict versus a stricter
sample size criterion. In our application, all 3 cri-
teria provide the sample size required to estimate
childhood TB prevalence with a 95% posterior CrI
of length l =0.1, but differ on the probability of this
occurring across the sample space of possible data
sets. The 3 criteria are:

� Average Coverage Criterion (ACC): This criterion

ensures that the coverage of the posterior CrI of

fixed length 0.1 is at least 95% when averaged

across all data sets. To implement this criterion,

given prior information, 4,000 random data sets of

test results were generated using the prior informa-

tion. For each data set, a Bayesian latent class

model13 was used to obtain the posterior distribu-

tion of the prevalence as well as the coverage of the

highest posterior density (HPD) interval with a

length of 0.1. The algorithm searches for the mini-

mal sample size to ensure that the average coverage

across the 4,000 data sets is no smaller than 95%.

� Average Length Criterion (ALC): Similar to the ACC,

this criterion ensures that the expected length of the

posterior CrI of fixed coverage 95% is at most 0.1

when averaged across all data sets. It is implemen-

ted the same way as the ACC, except that the length

of the HPD interval with 95% coverage is calculated

for each sample. The minimal sample size is

searched to ensure that the average of the lengths is

no wider than 0.1.

� Modified Worst Outcome Criterion (MWOC):

Because both the ACC and ALC return sample sizes

that guarantee desired lengths and coverages only

on average, a stricter criterion is also of interest.

The criterion ensures that at least 95% of the pos-

terior credible intervals of coverage 95% are no

wider than 0.1, which is also equivalent to at least

95% of the posterior CrI of length 0.1 have coverage
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no less than 95%. We thus seek the minimum sam-

ple size such that at least 95% of predicted data

sets have HPD coverage of at least 95% for intervals

of length at most 0.1.

All priors were converted into the closest fitting
Beta distributions, as listed in Table 1, by matching
the plausible range of the prior information to the
2.5% and 97.5% quantiles of the Beta distribution.
We assumed sample sizes larger than 100,000
would be infeasible. The methods were implemen-
ted using the freely available PropMisclassSample
Size program.20

Determining the Total Cost of Testing

Though costs from different perspectives could
be considered in a disease prevalence survey, we
consider only direct costs from the perspective of
the research or public health body that is planning
the prevalence study. We will not consider indirect
costs that may arise from a societal perspective. In a
TB prevalence survey, the direct testing cost
includes both fixed costs (denoted by I) and variable
costs. Fixed costs would include the capital cost of
the testing equipment as well as staff training for
operating the equipment. We consider 2 types of
variable costs. One type of variable cost would be
proportional to sample size of the prevalence study,
denoted by N, with a fixed unit cost, denoted by m.
This would include consumables and reimburse-
ment to subjects. A second type of variable cost
could increase non-linearly with the sample size;
e.g., via a step function. This kind of variable cost
would include additional test kits, equipment and

operating staff that become necessary after a certain
quantum increase in the sample size.11 For exam-
ple, assume the capacity of an equipment during a
study period of a fixed duration is N0, then [N/N0]
units of this equipment are needed, where [x]
returns the smallest integer no less than x. Assume
the variable cost of the equipment is m0. In this
case, the total testing cost, M, of a TB prevalence
survey can be defined as the sum of the fixed and
variable costs:

M5I1m �N1m0 �
N

N0

� �
: (2)

More generally there could be more than one
term in the variable costs in (2) since the variable
costs of each test in the test combination may be
affected differently by the sample size. As more
data on cost-sample size relationships become avail-
able, more complex testing cost functions can be
defined. For example, the marginal unit cost of a
test may decrease with the increase in sample size.
Then, a power function with exponent less than
one could be used to model the total cost of this
test.

In real applications, the fixed cost, the unit cost,
and the sample size could all be affected by the
choice of tests being used. Usually, when multiple
tests are used and/or when the tests used are more
accurate, the fixed cost and unit cost become larger,
since more test equipment is required and more
accurate tests are usually more expensive. However,
since multiple tests or more accurate tests usually
provide more accurate results, this can reduce the
required sample size.

Table 1 Accuracy Properties12 and Unit Cost (USD)13–16 of Tests for Childhood Tuberculosis
Prevalence Survey

Test

Sensitivity, Median

(95% CrI)

Prior Distribution

of Sensitivity

Specificity, Median

(95% CrI)

Prior Distribution

of Specificity

Unit Cost, $

Different Sources

Culture 0.60
(0.46, 0.76)

Beta (24.2, 15.4) 1.00
(0.99, 1.00)

Beta (524.1, 2.8) 5.12
12.10
14.89

Xpert 0.49
(0.38, 0.62)

Beta (31.2, 31.3) 0.99
(0.97, 1.00)

Beta (413.9, 5.8) 14.93
16.90
33.50

CXR 0.64
(0.55, 0.73)

Beta (69.8, 39.1) 0.78
(0.734, 0.83)

Beta (201.7, 54.9) 14.43

TST 0.75
(0.61, 0.84)

Beta (42.0, 15.3) 0.69
(0.63, 0.76)

Beta (139.1, 60.4) 10.06

CrI, credible interval; CXR, chest x-ray; TST, tuberculosis skin test; USD, United States dollars ($).
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Initially, we will assume that, in our hospital set-
ting, the testing equipment and trained staff are
already available. When fixed costs are already
paid, the total testing cost simplifies to

M5m �N;

as I is set to zero. The unit cost m of a testing combi-
nation is the sum of the listed prices of the tests
included in the combination. For example, the unit
cost of carrying out culture plus CXR is $19.55 in
our main analysis.

We then illustrate the impact of variable costs by
taking the purchase price of additional testing
devices into account in an additional analysis. One
disadvantage of Xpert is its low throughput. The
commonly used model GX4, with 4 modules, allows
no more than 20 tests per 8-h shift. Assume the
existing Xpert device is mainly used for clinical
diagnosis and can only allow 5 research tests per
day. To reduce the duration of the study period,
additional Xpert devices might be needed. For
example, if a researcher desires to complete the
study in 6 months or 125 working days, and if the
required sample size N exceeds 5 3 125 = 625, we
will need [(N-625)/(203125)] additional Xpert
devices. The purchase price for a GX4 Xpert device
is $17,000.

We will calculate the required sample size and
compare the total testing cost for all possible testing
combinations. The testing combination with the
smallest total testing cost is optimal and should be
recommended. In sensitivity analyses, we will
examine the impact of using an alternative unit cost
for culture and the impact of using a larger required
width of the posterior CrI of l=0.2 in our sample
size criteria.

RESULTS

Main Results

In our initial analyses, the required sample sizes
and total testing costs for each testing combination
under the MWOC, the ACC, and the ALC criteria for
the desired 95% CrI width of 0.1 are listed in Table
2. When the MWOC is used, only the 2 combina-
tions of 3 tests obtain the desired precision, within
a reasonable sample size of 2,407 and a total testing
cost of $71,271.27 for the culture, CXR and TST
combination, and a sample size of 3,652 and a total
testing cost of $143,961.84 for the Xpert, CXR and

TST combination. When the ACC is used, the
required sample size for the combination of culture
and CXR is 4,356 with a total testing cost of
$85,159.80, and the required sample size for the
combination of Xpert and CXR is 7,459 with a total
testing cost of $218,996.24. Adding a third test to
these 2-test combinations dramatically reduces the
sample size. For example, adding TST to the Xpert
plus CXR combination reduces the required sample
size to 1,428, or less than one-fifth of the previous
size. Though the unit cost is increased from $29.36
to $39.42, the total testing cost is reduced to
$56,291.76, or a quarter of the cost. Similarly, add-
ing TST into the culture plus CXR combination
reduces the sample size from 4,356 to 1,070 with a
total testing cost of $31,682.70. When the ALC is
used, the sample sizes are also substantially
reduced when adding a third test to any combina-
tion of 2 tests, with a minimal sample size of 836
and a total testing cost of $24,753.96. Note that no
single test can obtain the desired precision regard-
less of the criterion used. Across all 3 Bayesian sam-
ple size criteria, the two 3-test combinations resulted
in not only the minimal sample sizes but also the
minimal total testing costs, compared with any of the
2-test or single-test combinations. Therefore, though
adding an additional test increases the unit cost, the
required sample size and the total testing cost may
be decreased dramatically. In such a case, it is worth
spending more per subject to reduce the total cost.
However, it is not always true that more tests per
subject or smaller sample size leads to lower costs.
For example, when the ALC is used, the required
sample size of the combination of Xpert, CXR, and
TST is 1,000 smaller than the required sample size of
the combination of culture and X-ray, the cost is
about $3,000 less.

Presenting results for all 3 sample size criteria
allows us to see how much more we would need to
pay if we insist on a more stringent criterion.
Whether we pursue the more stringent criterion will
depend on whether the cost and sample size are fea-
sible in practice, as well as the additional value of
information that could be obtained with larger
sizes.

Sensitivity Analysis

In the sensitivity analysis where the unit cost of
culture was increased to $14.89, the total testing
costs of the combination of culture, CXR, and
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TST under the MWOC, ACC, and ALC become
$94,787.66, $42,136.60 and $32,921.68, respectively.

When the cost of purchasing additional Xpert
devices is considered, the optimal testing combina-
tion does not change, since Xpert was not included
in the optimal combination of tests to use. However,
all testing combinations including the Xpert test
will need to purchase additional Xpert devices. For
example, the combination of Xpert, CXR, and TST
will need 2 additional devices under the MWOC,
with costs of $34,000, and 1 additional device is
required under the ACC or ALC, with a cost of
$17,000.

When we doubled the width of the desired CrI
from 0.1 to 0.2, and recalculated the sample size
required for the ALC criterion, the required sample
sizes and total testing costs reduced dramatically.
Once again, the combination of culture, CXR, and
TST achieved the smallest sample size of 133 with
total cost of $10,507, whereas the combination of
Xpert, CXR, and TST achieved the lowest total cost
of $10,304 with a sample size of 161. In addition,
the 2-test combination of Xpert and TST as well as
the combination of culture and TST had lower total
testing costs than the 3-test combination of smear,
CXR, and TST, with the required sample sizes of
264, 201, and 242, respectively, and the total testing
costs of $11,088, $11,457, and $14,278, respectively.
Thus, here we find another example where a
smaller number of tests per subject leads to lower
overall cost, similar to earlier examples.

DISCUSSION

Accurately measuring the burden of a disease
in a given setting can be challenging when there is
no single perfect diagnostic test for the disease.
Typically, multiple imperfect tests need to be
employed, potentially increasing the cost of the
study. The challenge is illustrated here by the prob-
lem of designing a study for measuring the preva-
lence of childhood TB. A recent expert consensus
document has encouraged the use of a panel of com-
monly used, imperfect tests in research studies
aimed at measuring disease prevalence and/or diag-
nostic accuracy10 related to childhood TB, with the
consideration that the diagnosis of TB in children
has additional challenges to the diagnosis in adults.
In this paper, we have discussed how tests from
this panel (culture, Xpert, CXR, and TST) can be
used jointly to design a childhood TB prevalence
study in a hospital setting.

All possible combinations of conditionally inde-
pendent tests were considered. For each test combi-
nation, Bayesian sample size criteria were applied
to obtain the required sample size. Our results sug-
gest that using more diagnostic tests is a potential
strategy to reduce the total sample size and total
testing cost of a prevalence study. In our example,
the total testing cost was reduced to less than
one-half when adding a third test to any 2-test com-
bination. This is an important finding that
should encourage TB researchers to gather data on
more rather than fewer tests. The availability of

Table 2 Required Sample Sizes and Total Testing Costs of All Potential Testing Combinations

MWOC ACC ALC

Test Combination

Sample Size

Required

Cost,

USD

Sample Size

Required

Cost,

USD

Sample Size

Required

Cost,

USD

Culture + CXR + TST 2,407 71,271.27 1,070 31,682.70 836 24,753.96
Xpert + CXR + TST 3,652 143,961.84 1,428 56,291.76 1,141 44,978.22
Culture + CXR .100,000 .1,955,000 4,356 85,159.80 2,151 42,052.05
Culture + TST .100,000 .1,518,000 .100,000 .1,518,000 3,520 53,433.60
CXR + TST .100,000 .2,449,000 .100,000 .2,449,000 .100,000 .2,449,000
Xpert + CXR .100,000 .2,936,000 7,459 218,996.24 3,396 99,706.56
Xpert + TST .100,000 .2,499,000 .100,000 .2,499,000 6,004 150,039.96
Culture .100,000 .512,000 .100,000 .512,000 .100,000 .512,000
Xpert .100,000 .1,493,000 .100,000 .1,493,000 .100,000 .1,493,000
CXR .100,000 .1,443,000 .100,000 .1,443,000 .100,000 .1,443,000
TST .100,000 .1,006,000 .100,000 .1,006,000 .100,000 .1,006,000

Data presented using 3 Bayesian sample size criteria when the width of the desired 95% credible interval (CrI) is 0.1. ACC, average coverage criterion;
ALC, average length criterion; CXR, chest x-ray; MWOC, modified worst outcome criterion; TST, tuberculosis skin test; USD, United States dollars ($).
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information on more diagnostic tests will in turn
allow for the construction of a more informative
latent class model. This study also suggests that test
costs can sometimes be an important component of
study design in diagnostic research. It is necessary
to consider and collect cost data in addition to the
usual consideration of specificity and sensitivity
data of the diagnostic tests used.

The methods in this paper can be applied to set-
tings other than hospitals, such as population pre-
valence studies, and to diseases other than TB. Test
accuracy may vary depending on the setting. For
example, the microbiological tests we considered
(culture and Xpert) may have lower sensitivity in a
community setting where TB cases are likely to be
less severe and therefore have a lower bacillary
load. In general, these methods are potentially
extendable to any setting where costs will be con-
sidered along with sample size in the design of a
study.

We assumed that the prevalence study would be
designed using conditionally independent tests, so
as to maximize the incremental value of each test,21

thus decreasing the total sample size required.
While, conditional dependence between any pair of
tests cannot be ruled out completely, our recent
work has shown that unless there is a strong rela-
tion between two tests due to a missing covariate, it
is unlikely that the magnitude of conditional depen-
dence has an important impact.22 Such a high con-
ditional dependence is likely to exist between the
culture and Xpert tests, which both depend on the
unmeasured bacillary load. Therefore, we reasoned
that these 2 tests should not be used in the same
study, as they would provide highly correlated
information.

It should be noted that we assumed that once a
testing strategy is selected, all test results will be
gathered on all individuals included in a preva-
lence study, as it will be carried out within the con-
text of research. This may be different from routine
clinical practice, where the goal is to make a deci-
sion for an individual patient. In such a setting,
additional cost savings may be incurred per patient
by carrying out tests in a sequential manner. For
example, only patients with an abnormal CXR may
be selected for additional testing. Such data, how-
ever, is less suitable for research as not all test com-
binations will be observed. Therefore, in a preva-
lence study one might prefer to consider all tests
regardless of results or sequence to fully use all
available information.

In our example with the required 95% CrI length
of 0.1, a larger sample size was always associated
with greater cost. However, when we doubled the
length, some testing combinations resulted in lower
costs even though they required larger sample sizes.
This occurred because the sample sizes are all
reduced dramatically so that the differences in sam-
ple sizes become smaller, meaning that unit costs
have more impact on the total costs. When some
variable costs are step functions of the required
sample size, small increases in sample size of a test-
ing combination may require additional equipment,
raising the variable cost even if it results in a
smaller sample size. In our initial example, more
tests always resulted in a reduced sample size but
the above case shows that this is not always true.
Similar situations may also occur when there is
dependence between 2 or more tests. For example,
the use of the Xpert test together with culture is
likely to increase the cost with little increase in
information, as the Xpert test will primarily identify
the same subset of the patients identified by culture.
More work is needed to extend our methods to mod-
els that account for test dependence.

In our example, we only considered the need for
additional Xpert devices, which had only minimal
effect and did not change our optimal testing combi-
nation. In general, however, the impact of the cost
of new or additional devices may depend on the
specific costs, and results can differ more substan-
tially. When there are no existing devices available
for some tests, the initial purchase cost of the
devices may dominate the total cost.

Our methods were limited to the consideration of
financial costs, but a broader economic analysis
might consider other aspects such as the feasibility
of carrying out each test or even patient outcomes.
Such analyses could consider the tradeoff between
using a cheaper test with a long turnaround time v.
a more expensive test with a shorter turnaround
time. We have provided a general formula for calcu-
lating the total costs of a disease prevalence study
but the exact formula and costs used will depend
on the particulars of each study setting.

Extensions to the latent class model used here
that are of interest for future research could include
accounting for conditional dependence between the
tests, or adding a hierarchical structure suitable for
clustered data, which may arise in a population sur-
vey with clustered sampling. In this case, when cal-
culating the total testing cost, the impact of the
number of sampling clusters on fixed costs could
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also be considered. Variations in costs of testing
across clusters may also need to be considered.

In conclusion, the total testing cost should be
considered when designing a prevalence study in
the absence of a perfect reference test. Using more
diagnostic tests is a potential strategy to reduce the
total testing cost, but as our examples show, this is
not guaranteed.

REFERENCES

1. Rahme E, Joseph L, Gyorkos TW. Bayesian sample size deter-

mination for estimating binomial parameters from data subject to

misclassification. Appl Stat. 2000;49:119–28.

2. Dendukuri N, Rahme E, Bélisle P, Joseph L. Bayesian sample

size determination for prevalence and diagnostic test studies in

the absence of a gold standard test. Biometrics. 2004;60:388–97.

3. Dendukuri N, Bélisle P, Joseph L. Bayesian sample size deter-

mination for diagnostic test studies in the absence of a gold stan-

dard: Comparing identifiable to non-identifiable models. Stat

Med. 2010;29:2688–97.

4. Jenkins HE, Tolman AW, Yuen CM, et al. Incidence of multi-

drug-resistant tuberculosis disease in children: Systematic

review and global estimates. Lancet. 2014;383:1572–9.

5. World Health Organization. Global tuberculosis report. 2015.

Available from: URL: http://apps.who.int/iris/bitstream/10665/

191102/1/9789241565059_eng.pdf.

6. Swaminathan S, Rekha B. Pediatric Tuberculosis: Global

Overview and Challenges. Clin Infect Dis. 2010;50:S184–94.

7. Zar HJ, Connell TG, Nicol M. Diagnosis of pulmonary tubercu-

losis in children: new advances. Expert Rev Anti Infect Ther.

2010;8:277–88.

8. Graham SM, Ahmed T, Amanullah F, et al. Evaluation of

tuberculosis diagnostics in children: 1. Proposed clinical case

definitions for classification of intrathoracic tuberculosis disease.

Consensus from an expert panel. J Infect Dis. 2012;205(Suppl 2):

S199–S208.

9. Cuevas LE, Browning R, Bossuyt P, et al. Evaluation of tuber-

culosis diagnostics in children: 2. Methodological issues for

conducting and reporting research evaluations of tuberculosis

diagnostics for intrathoracic tuberculosis in children. Consensus

from an expert panel. J Infect Dis. 2012;205(Suppl 2):S209–S215.

10. Graham SM, Cuevas LE, Jean-Philipe P, et al. Clinical case

definitions for classification of intrathoracic tuberculosis in chil-

dren: an update. Clin Infect Dis. 2015;61(Suppl 3):S179–S187.

11. World Health Organization. Tuberculosis prevalence surveys:

A handbook. 2011.

12. Schumacher S, van Smeden M, Dendukuri N, Joseph L, Nicol

P, Pai M, Zar J. Diagnostic test accuracy in childhood pulmonary

tuberculosis: a Bayesian latent class analysis. Am J Epidemiol.

2016;184:690–700.

13. Joseph L, Gyorkos T, Coupal L. Bayesian estimation of disease

prevalence and the parameters of diagnostic tests in the absence

of a gold standard. Am J Epidemiol. 1995:263–72.

14. Hausler HP, Sinanovic E, Kumaranayake L, et al. Costs of

measures to control tuberculosis/HIV in public primary care

facilities in Cape Town, South Africa. Bull World Health Organ.

2006;84:528–36.

15. TB Diagnostics Market Analysis Consortium. Market assess-

ment of tuberculosis diagnostics in South Africa in 2012–2013.

Int J Tuberc Lung Dis. 2015;19:216–22.

16. Shah M, Chihota V, Coetzee G, Churchyard G, Dorman SE.

Comparison of laboratory costs of rapid molecular tests and

conventional diagnostics for detection of tuberculosis and drug-

resistant tuberculosis in South Africa. BMC Infec Dis. 2013;13:

352.

17. Cunnama L, Sinanovic E, Ramma L, et al. Using top-down

and bottom-up costing approaches in LMICs: The case for using

both to assess the incremental costs of new technologies at scale.

Health Econ. 2016;25:S1.

18. Adcock CJ. A Bayesian approach to calculating sample size.

Statistician. 1988:433–9.

19. Joseph L, du Berger R, Bélisle P. Bayesian and mixed

Bayesian/likelihood criteria for sample size determination. Stat

Med. 1997;16:769–81.

20. PropMisclassSampleSize Version 5.9 [Computer software].

2016. Available from: URL: http://www.medicine.mcgill.ca/epi

demiology/Joseph/software/Bayesian-Sample-Size.html.

21. Ling DI, Pai M, Schiller I, et al. A Bayesian framework for

estimating the incremental value of a diagnostic test in the

absence of a gold standard. BMC Med Res Methodol. 2014;14:67.

22. Wang Z, Dendukuri N, Joseph L. Understanding the effects of

conditional dependence in research studies involving imperfect

diagnostic tests. Stat Med. 2017;36:466–80.

WANG AND OTHERS

8 � MEDICAL DECISION MAKING/MON–MON XXXX


