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Bias due to composite reference
standards in diagnostic accuracy studies
Ian Schiller,a Maarten van Smeden,b Alula Hadgu,c
Michael Libman,d Johannes B. Reitsmab and
Nandini Dendukuria*†

Composite reference standards (CRSs) have been advocated in diagnostic accuracy studies in the absence of a
perfect reference standard. The rationale is that combining results of multiple imperfect tests leads to a more
accurate reference than any one test in isolation. Focusing on a CRS that classifies subjects as disease positive if
at least one component test is positive, we derive algebraic expressions for sensitivity and specificity of this CRS,
sensitivity and specificity of a new (index) test compared with this CRS, as well as the CRS-based prevalence. We
use as a motivating example the problem of evaluating a new test for Chlamydia trachomatis, an asymptomatic
disease for which no gold-standard test exists. As the number of component tests increases, sensitivity of this
CRS increases at the expense specificity, unless all tests have perfect specificity. Therefore, such a CRS can lead
to significantly biased accuracy estimates of the index test. The bias depends on disease prevalence and accuracy
of the CRS. Further, conditional dependence between the CRS and index test can lead to over-estimation of
index test accuracy estimates. This commonly-used CRS combines results from multiple imperfect tests in a way
that ignores information and therefore is not guaranteed to improve over a single imperfect reference unless
each component test has perfect specificity, and the CRS is conditionally independent of the index test. When
these conditions are not met, as in the case of C. trachomatis testing, more realistic statistical models should be
researched instead of relying on such CRSs. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

For many diseases, there is no gold standard diagnostic test having both perfect sensitivity and specificity.
Obtaining a definitive diagnosis for each subject in a diagnostic test evaluation study or disease prevalence
study therefore becomes challenging [1]. Disease classification based on any imperfect single reference
test will lead to biased inferences [2–4].

Consider the problem of evaluating a new test for Chlamydia trachomatis (C. trachomatis), an asymp-
tomatic, infectious disease with harmful medical consequences if missed, and potentially serious social
consequences if falsely diagnosed. The reference test of choice was previously cell culture, which is
thought to have near-perfect specificity but only moderate sensitivity [5]. More recently, developed
nucleic acid amplification tests (NAATs) are considered more sensitive than culture, but not as specific.

To reduce the misclassification of C. trachomatis status, a number of studies have used a composite
reference standard (CRS) for evaluating a new test (or index test) [6–11]. For example, Alonzo et al. [6]
defined a CRS based on two imperfect tests-cell culture and polymerase chain reaction (PCR). Subjects
were classified as C. trachomatis-positive if positive on at least one of the two component tests and as
negative otherwise. This CRS is based on what we will refer to as an OR decision rule (i.e., logical
disjunction or ‘any positive’ rule) according to which a positive result on one or more component tests
is defined as having the disease of interest. Another common way to define a CRS is the AND decision
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rule (i.e., logical conjunction or ‘all positive’ rule) according to which a positive result on all component
tests is required to classify a subject as having the disease. Besides applications in C. trachomatis, CRSs
are widely used, for example, for extra-pulmonary tuberculosis, community-acquired pneumonia, and
pertussis [12–14].

The CRS is appealing because it provides a simple rule to assign a final ‘diagnosis’ to each study
subject. It is also described as being ‘unaffected by’ or ‘independent of’ the test under evaluation because
the test under evaluation is not used in defining the final diagnosis [6,8]. However, although the CRS aims
to reduce misclassifications of the disease status, it will not eliminate them [15]. Nor are the component
tests necessarily independent of the index test [16]. For C. trachomatis, the aim is to reduce the number
of false negatives by increasing the number of component tests in combination with the OR-rule. The
prospect of reducing misclassification by increasing the number of component tests has led to a diversity
of CRSs encountered in practice – some having as few as two component tests [6,17], others as many as
9 [10], while the Food and Drug Administration (FDA) draft guidance requires four [18].

So far, little attention has been paid to study the accuracy of the CRS itself and to how its accuracy is
affected by its composition [16,19]. Another aspect that has not received much attention is the impact of
dependence between the errors of the component and index tests. Alternative statistical methods, particu-
larly latent class analysis, have been the subject of much scrutiny with regard to the impact of conditional
dependence, and studies have shown that ignoring conditional dependence can result in over-estimation
of accuracy of the index test [20–23]. Dependence of errors may occur, for example, if there exists a
spectrum of disease severity with both component and index tests being more likely to detect more severe
cases and to miss less severe cases [24,25] or when component and index tests are based on the same tech-
nology. In the approach currently used by the FDA to evaluate new NAATs for C. trachomatis infection,
a new test is typically compared against a CRS made up of other NAATs based on the same biological
mechanism [18, 26]. It is highly likely that there is a conditional dependence between the CRS and the
test under evaluation in this setting.

In this article, we aim to bridge these gaps by elucidating the workings of the CRS. We will focus
on the OR definition of the CRS as this applies to most C. trachomatis settings, where the specificity of
the component tests are considered to be relatively high and there is an interest in improving the overall
sensitivity of the CRS beyond that of any single component test. In Section 2, we describe a motivating
example of evaluating a new test for C. trachomatis. In Section 3, we derive algebraic expressions for the
accuracy of the CRS, as well as expressions for the index test’s accuracy based on the CRS. In Sections 4
and 5, we examine the behavior of these parameters in several simulated scenarios. In section 6, we briefly
investigate CRSs defined by other decision rules. We conclude with a Discussion.

2. Estimating the accuracy of a test for C. trachomatis infection

To illustrate application of a CRS in practice, we use data from a diagnostic accuracy study of C. tra-
chomatis tests [8]. Data are available on 743 asymptomatic women (see Supporting Information) on three
types of tests: (i) four NAATs: PCR and ligase chain reaction (LCR) tests each carried out on both cer-
vical (PCRC, LCRC) and urine specimens (PCRU, LCRU); (ii) two culture tests one each on cervical
(CULC) and urethral specimens (CULU); and (iii) a DNA hybridization test (DNAP).

Although based on different mechanisms, all tests are designed to have high specificity [27]. NAATs are
designed to detect C. trachomatis DNA at a low organism load and are therefore considered most sensitive
[5]. However, these tests cannot distinguish between DNA from viable and non-viable organisms con-
tributing to less than perfect specificity. In comparison, cell culture and DNAP tests have lower sensitivity
[5]. The cervical culture test is believed to have near perfect specificity [8]. We use one NAAT(PCRU),
which was new at the time of the data collection, as the index test.

To evaluate the robustness of CRS-based accuracy estimates, we considered different CRSs that could
reasonably be defined with the available data. To examine the impact of increasing the number of
component tests, we defined a sequence of reference standards starting with a single test (CULC) fol-
lowed by CRS1 = CULC+ OR CULU+, CRS2= CRS1+ OR DNAP+, CRS3=CRS2+ OR LCRC+ and
CRS4=CRS3+ OR LCRU+.

When the reference standard was CULC, estimated sensitivity of the index test PCRU was 0.83
(95%CI, 0.75 − 0.89), but it decreased to 0.78 (95%CI, 0.70 − 0.83) using a CRS with five component
tests (Table I). Simultaneously, the estimated specificity of PCRU ranged from 0.94 (95%CI, 0.92−0.96)
based on CULC to 0.99 (95%CI, 0.98−0.99) based on five component tests. Our example shows that esti-
mates of sensitivity and specificity of the index test are clearly sensitive to composition of the reference
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Table I. Impact of increasing number of tests in the CRS on estimated sen-
sitivity (Ŝ∗

PCRU) and estimated specificity (Ĉ∗
PCRU) of the PCRU test. (For

each CRS component tests used in OR decision rule appear in brackets.)

Estimate (95% Confidence Interval)

Reference standard Ŝ∗
PCRU Ĉ∗

PCRU

CULC+ 0.833 (0.752 − 0.892) 0.943 (0.923 − 0.959)
CRS1 (CULC+ or CULU+) 0.825 (0.747 − 0.883) 0.957 (0.938 − 0.970)
CRS2 (CRS1+ or DNAP+) 0.810 (0.732 − 0.869) 0.961 (0.943 − 0.974)
CRS3 (CRS2+ or LCRC+) 0.804 (0.705 − 0.838) 0.983 (0.969 − 0.991)
CRS4 (CRS3+ or LCRU+) 0.776 (0.704 − 0.834) 0.992 (0.980 − 0.996)

standard. This has also been noted by others, for example, in a systematic review of tests for C trachoma-
tis, Cook et al. [28] found that those studies that had used a CRS with more component tests reported
lower sensitivity and higher specificity. To understand how the composition of the CRS affects its accu-
racy and the estimated accuracy of the index test, we derive analytical expressions for the properties of
the CRS as a function of its component tests in the following section.

3. Accuracy of composite reference standards and accuracy of index test with
respect to composite reference standards

Let Ti = (Ti1,… ,TiP) denote the vector of observed diagnostic test results for the ith subject. Tij takes
values one if positive and zero if negative on test j, and Pr(Ti) denotes the probability function of observ-
ing Ti. The first (P− 1) tests are used to define the CRS. The Pth test is an index test to be evaluated. The
CRS based on the OR-rule is formally defined as

CRSi = I(Ti1,… ,TiP−1) =
{

1 if max(Ti1,… ,TiP−1) = 1
0 if max(Ti1,… ,TiP−1) = 0,

(1)

where I is an indicator function and CRSi=1 implies the ith subject is classified as having the disease. For
brevity, we drop the subscript i from the remainder of the presentation.

In the development later, we examine two scenarios: (i) the P tests (i.e., both component and index) are
independent conditional on the true (unobserved) disease status; (ii) the P tests are dependent conditional
on the true disease status.

3.1. Case when tests are conditionally independent

Assume that all P tests are stochastically independent conditional on the target disease status. The target
disease status, denoted by D, takes the value d = 0 if the target disease is absent, and d = 1 if it is present.
The probability function of each combination of test results can be written as

Pr(T) =
1∑

d=0

Pr(T1,… ,TP|D = d)Pr(D = d) =
1∑

d=0

Pr(D = d)
P∏

j=1

Pr(Tj|D = d). (2)

The sensitivity of the CRS based on the OR-rule is given by

SCRS = Pr(CRS = 1|D = 1) = Pr(max(T1,… ,TP−1) = 1|D = 1)

= 1 −
P−1∏
j=1

(1 − Pr(Tj = 1|D = 1)) = 1 −
P−1∏
j=1

(1 − Sj),
(3)

where Sj denotes the true sensitivity of the jth component test. The specificity of the CRS is given by

CCRS = Pr(CRS = 0|D = 0) = Pr(max(T1,… ,TP−1) = 0|D = 0)

=
P−1∏
j=1

Pr(Tj = 0|D = 0) =
P−1∏
j=1

Cj,
(4)
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where Cj denotes the true specificity of the jth component test.
A perfect CRS would have zero probability of misclassification, that is: Pr(CRS = 1|D = 1) =

Pr(CRS = 0|D = 0) = 1. From Equations (3) and (4), it follows that for a CRS based on a finite number of
component tests, under the assumption of conditional independence of all component tests, the OR-rule
leads to a perfect CRS if and only if the following conditions are satisfied:

(1) C1 = C2 = … = C(P−1) = 1,
(2) Sj = 1 for at least one j = 1,… ,P − 1.

Put in words, the conditions given previously imply that for a CRS to be perfect it should include at
least one component test with perfect sensitivity and specificity (i.e., is a gold standard which would
then make the use of the CRS unnecessary), and all other component tests should at least have perfect
specificity. Clearly, these conditions will not be met in practice. It is therefore of interest to see how the
use of the CRS influences the estimated accuracy of the index tests.

Let the sensitivity of index test TP with respect to the CRS be denoted by S∗
P. It can be shown that,

S∗
P = Pr(TP = 1|CRS = 1)

=

∑1
d=0 Pr(TP = 1|D = d)

{
1 −

∏P−1
j=1

(
1 − Pr(Tj = 1|D = d)

)}
Pr(D = d)∑1

d=0

{
1 −

∏P−1
j=1

(
1 − Pr(Tj = 1|D = d)

)}
Pr(D = d)

,
(5)

illustrating that CRS based sensitivity of index test is a function of the sensitivity and specificity of the
component tests and the true disease prevalence. From Equation (5), it can be seen that the sensitivity
of the index test with respect to the CRS will be exactly equal to the true sensitivity of the index test
(S∗

P = SP) if any of the following conditions are satisfied:

(1) Pr(D = 1) = 1
(2) C1 = C2 = · · · = C(P−1) = 1
(3) SP = 1 − CP.

The specificity of index test P with respect to the CRS is given by

C∗
P = Pr(TP = 0|CRS = 0)

=
∑1

d=0 Pr(TP = 0|D = d)Pr(D = d)
∏P−1

j=1 Pr(Tj = 0|D = d)∑1
d=0 Pr(D = d)

∏P−1
j=1 Pr(Tj = 0|D = d)

,
(6)

and thus also relies on the accuracy of the component tests and the true disease prevalence. It follows
directly from Equation (6) that under conditional independence of all P tests, the OR-rule leads to C∗

P =
CP if any of the following conditions are satisfied:

(1) Pr(D = 0) = 1
(2) S1 = S2 = · · · = S(P−1) = 1
(3) CP = 1 − SP.

Considered in the context of our example on C. trachomatis, the Conditions 1 and 3 above for unbiased
sensitivity or unbiased specificity are not relevant. A diagnostic study is unlikely to be designed in a
population where the disease is either present or absent in 100% of individuals, nor is it realistic that
the index test has no discriminatory value (i.e., SP + CP = 1). Under conditional independence, an
unbiased estimate of the sensitivity (specificity respectively) of an index test would be obtained only if
all specificities (sensitivities respectively) of P − 1 component tests equal one. This means that even in
the ideal scenario where all component tests have perfect specificity leading to S∗

P being unbiased, C∗
P

will be biased. For the case of C. trachomatis, while it is true that cell culture is believed to have near
perfect specificity, the condition that all component tests have perfect specificity will not be met. We will
study the consequences of having high, although not perfect, specificities on S∗

P and C∗
P in Section 4.

The estimated disease prevalence with respect to the CRS is defined by

Pr(CRS = 1) = Pr(D = 1)

(
1 −

P−1∏
j=1

(
1 − Sj

))
+ Pr(D = 0)

(
1 −

P−1∏
j=1

Cj

)
. (7)
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3.2. Case when tests are conditionally dependent

Conditional dependence between the P observed tests would arise due to their association with a variable
besides the disease status D. Here, we will study the situation where conditional dependence is due to two
dichotomous random variables Z0 and Z1 – the variable Z1 causing dependence among subjects where
D = 1 and the variable Z0 causing dependence among subjects where D = 0. Conditional dependence
between component and index tests among true disease positives would imply they both have imperfect
sensitivity. Likewise for specificity.

In the case of our motivating example on C. trachomatis tests, Z1 could be the severity of the dis-
ease status (or organism load) among those with the infection, while Z0 could represent the presence
of 𝐶ℎ𝑙𝑎𝑚𝑦𝑑𝑖𝑎 DNA among subjects who had a recent infection but are currently disease negative. The
three dichotomous variables Z1, Z0, and D define between them four possible classes of subjects. We will
denote these classes by the following: L1 = (Z1 = 1,D = 1), L2 = (Z1 = 0,D = 1), L3 = (Z0 = 1,D = 0)
and L4 = (Z0 = 0,D = 0). The joint probability function of the observed test results can be defined
as follows:

Pr(T) =
1∑

Z1=0

Pr(T1,… ,TP|Z1,D = 1)Pr(Z1,D = 1)

+
1∑

Z0=0

Pr(T1,… ,TP|Z0,D = 0)Pr(Z0,D = 0),

=
4∑

k=1

Pr(T1,… ,TP|Lk)Pr(Lk) =
4∑

k=1

Pr(Lk)
P∏

p=1

Pr(Tp|Lk),

(8)

assuming conditional independence between all P tests within the four classes. Notice that when the P
tests are independent conditional on the target disease status Pr(Tp|L1) = Pr(Tp|L2) and Pr(Tp|L3) =
Pr(Tp|L4).

The sensitivity and specificity of the jth test with respect to the true disease status are given by

Sj = Pr(Tj = 1|D = 1) =
Pr(Tj = 1|L1)Pr(L1) + Pr(Tj = 1|L2)Pr(L2)

Pr(L1) + Pr(L2)
, and

Cj = Pr(Tj = 0|D = 0) =
Pr(Tj = 0|L3)Pr(L3) + Pr(Tj = 0|L4)Pr(L4)

Pr(L3) + Pr(L4)
.

(9)

The sensitivity and specificity of the CRS are given by the following:

SCRS =

∑2
k=1 Pr(Lk)

(
1 −

∏P−1
j=1

(
1 − Pr

(
Tj = 1|Lk

)))
∑2

k=1 Pr(Lk)
, and

CCRS =
∑4

k=3 Pr(Lk)
∏P−1

j=1

(
1 − Pr

(
Tj = 1|Lk

))
∑4

k=3 Pr(Lk)
.

(10)

The sensitivity and specificity of index test P with respect to the CRS are given by

S∗
P =

∑4
k=1 Pr

(
TP = 1|Lk

)
Pr(Lk)

{
1 −

∏P−1
j=1

(
1 − Pr

(
Tj = 1|Lk

))}
∑4

k=1

{
1 −

∏P−1
j=1

(
1 − Pr

(
Tj = 1|Lk

))}
Pr(Lk)

, (11)

C∗
P =

∑4
k=1 Pr

(
TP = 0|Lk

)
Pr(Lk)

∏P−1
j=1 Pr

(
Tj = 0|Lk

)
∑4

k=1 Pr(Lk)
∏P−1

j=1 Pr
(
Tj = 0|Lk

) . (12)
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4. Examining the sensitivity and specificity of the composite reference standards

Using the expressions from Section 3, we study the effect of various factors on SCRS and CCRS. We consider
the true sensitivity, specificity, and disease prevalence values in the following ranges: Sj ∈ (0.30, 0.90),
Cj ∈ (0.90, 0.99) and Pr(D = 1) ∈ (0.05, 0.30). These values are motivated by those expected for testing
of C. trachomatis and other infectious diseases, such as tuberculosis or pneumonia, where sensitivities
can range from low to high depending on the type of test, specificities are generally high, and disease
prevalence is low in the general population but can be higher in high-risk sub-groups. For ease of illus-
tration, we assume that all P − 1 component tests used to define the CRS have identical sensitivity and
specificity, that is, Sj = S,Cj = C, j = 1,… ,P − 1. The number of component tests are varied from 2
to 10.

We also examine the case where the observations are generated under the model specified by
Equation (8), where the P tests are conditionally dependent. The prevalence of the four classes are set
at Pr(L1) = 0.05, Pr(L2) = 0.05, Pr(L3) = 0.05, and Pr(L4) = 0.85. The following constraints are
applied without loss of generality: Pr(Tj = 1|L1) > Pr(Tj = 1|L2) and Pr(Tj = 1|L3) > Pr(Tj = 1|L4),
j = 1,…P − 1.

4.1. Accuracy of composite reference standards under conditional independence

From Equation (3), it follows that SCRS depends only on the sensitivities (S) of the component tests. As
the number of component tests increases, the sensitivity of the CRS itself increases. A simple intuitive
explanation for this relation is that as the number of component tests increases the number of patients
classified with a ‘positive’ diagnosis increases, and therefore, the probability of correctly classifying
at least one target disease positive subject increases. Table II shows that combining two component
tests both with sensitivity S = 0.6 will lead to a composite reference standard having sensitivity 0.84,
that is, the probability that at least one of the two tests correctly diagnose a disease positive subject is
0.84. By simply adding a third component test with sensitivity 0.6, the CRS’s sensitivity reaches 0.94.
In theory if we let the number of component tests tend to infinity, the sensitivity would approach one
(see Equation (3)).

Similarly, from Equation (4), it can be seen that the specificity of the CRS is completely determined
by the specificities (C) of the component tests. The specificity of the CRS is a decreasing function of
the number of tests. Again, the intuitive explanation is that the probability of all component tests having
a negative outcome for a given target disease negative subject becomes lower as the number of tests
increases. As shown in Table II, two tests with C = 0.95 specificity would together form a CRS with
specificity 0.90. Adding a third test with the same properties (S = 0.6,C = 0.95) would drive the CRS’s
specificity down to 0.86. In theory, adding an infinite number of tests would reduce the specificity of
the CRS toward zero (see Equation (4)). Thus, we observe that one cannot expect to improve both CRS
sensitivity and specificity simultaneously, unless C = 1 for all component tests.

Table II. Relation between number of component tests and the accuracy of a CRS under
settings of conditional independence and conditional dependence ((a) strong, (b) weak).

Conditional dependence

Conditional independence Setting (a) Setting (b)

P − 1 SCRS CCRS SCRS CCRS SCRS CCRS

2 0.840 0.903 0.800 0.930 0.840 0.903
3 0.936 0.857 0.888 0.917 0.936 0.857
4 0.974 0.815 0.934 0.908 0.974 0.815
5 0.98976 0.77378 0.96096 0.89824 0.98970 0.77383
10 0.99990 0.59874 0.99700 0.85414 0.99989 0.59891

True sensitivity and specificity of each component test are S = 0.60 and C = 0.95, respectively.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1454–1470
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Figure 1. Sensitivity and specificity of the composite reference standards versus sensitivity and specificity,
respectively, of component tests.

Figure 1 shows that for a given sensitivity of the component tests (x-axis), SCRS increases as the number
of component tests increases from P − 1 = 2 to P − 1 = 10. On the other hand, for a given specificity of
the component tests, CCRS decreases as P − 1 increases from 2 to 10.

4.2. Accuracy of composite reference standards under conditional dependence

To allow for comparison with the results under conditional independence, two particular settings are con-
sidered with greater and lesser conditional dependence. Conditional dependence within disease positive
is created by setting Pr(Tj = 1|L1) ≠ Pr(Tj = 1|L2) and conditional dependence within disease negative
by setting Pr(Tj = 1|L3) ≠ Pr(Tj = 1|L4). In setting (a), we consider a case where the magnitude of con-
ditional dependence is greater. We set Pr(Tj = 1|L1) = 0.80,Pr(Tj = 1|L2) = 0.40,Pr(Tj = 1|L3) = 0.73
and Pr(Tj = 1|L4) = 0.01, j = 1,… ,P − 1, so that the probability of a false negative outcome is
substantially larger in L2 than L1 and the probability of a false positive outcome much larger in L3
than L4. In setting (b) Pr(Tj = 1|L1) = 0.61,Pr(Tj = 1|L2) = 0.59,Pr(Tj = 1|L3) = 0.06 and
Pr(Tj = 1|L4) = 0.0494, corresponding to a situation where conditional dependence is weak. In both
cases, the probabilities stated previously ensured S = 0.60 and C = 0.95.

From Table II and Figure 1, it can be seen that in setting (a) SCRS does not increase as quickly when
P−1 increases from 2 to 10, while CCRS also does not decline as quickly compared with the case when the
tests are conditionally independent. From Table II, under setting (b), changes in SCRS and CCRS resemble
those observed under conditional independence. When the CRS is based on all conditionally dependent
tests, it will never achieve a specificity of one. For example, under the conditional dependence setting (a),
the component tests have a maximum possible specificity of 0.96, and CCRS reaches a maximum value
of 0.948 (Figure 1).

5. Bias in composite reference standards-based accuracy estimates

We now investigate the behavior of S∗
P and C∗

P in relation to the composition of the CRS. Of particular,
interest is the impact of the sensitivity and specificity of the component tests and the true disease preva-
lence on the bias in CRS-based sensitivity and specificity (S∗

P − SP, C∗
P − CP). We consider the same

ranges for accuracy of the component tests and true disease prevalence as in the previous section. The
true values of the accuracy of the index test are set to SP = 0.90 and CP = 0.90. Under conditional
dependence, these values are obtained by setting Pr(TP = 1|L1) = 0.98 and Pr(TP = 1|L2) = 0.82,
resulting in SP = 0.05×0.98+0.05×0.82

0.05+0.05
= 0.9. The probabilities contributing to the index test specificity are

set to Pr(TP = 1|L3) = 0.95 and Pr(TP = 1|L4) = 0.05, resulting in CP = 0.05×0.05+0.85×0.95
0.05+0.85

= 0.9.

5.1. Trends in CRS-based sensitivity and specificity with changes in accuracy of component tests and
disease prevalence

Figure 2 presents CRS-based sensitivity (S∗
P) and specificity (C∗

P) for varying accuracy of the component
tests, and disease prevalence assuming all tests are conditionally independent. The lines in each plot
correspond to a different number of component tests ranging from 2 to 10. It should be noted that the
values plotted are the expected values S∗

P and C∗
P (derived using Equations (5) and (6)).
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Composite reference standards-based sensitivity (S∗
P) and specificity (C∗

P) against accuracy of the com-
ponent tests and disease prevalence while all tests are conditionally independent. Upper panel (a and b): change
in S = (0.30, 0.90), while Pr(D = 1) = 0.10, C = 0.95. Middle panel (c and d): change in C = (0.90, 0.99),
while Pr(D = 1) = 0.10, S = 0.60. Lower panel (e and f): change in Pr(D = 1) = (0.05, 0.30), while C = 0.95,
S = 0.60. Each curve corresponds to a composite reference standards with a different number of component tests

2 ⩽ (P − 1) ⩽ 10).

From the three panels on the left of Figure 2, it can be seen that the CRS-based sensitivity S∗
P is much

lower than the true value of SP = 0.90 in all settings. We find that the bias in S∗
P is determined primarily by

worsening specificity of the component tests and decreasing true disease prevalence (see sharper slopes
in Figure 2(c) and e vs. Figure 2(a)). On the other hand, the bias in C∗

P is primarily due to lower sensitivity
of the component tests and increasing prevalence (Figure 2(b) and f vs. Figure 2(d)). The bias illustrated
in these figures corresponds to the particular case where the component tests share the same properties.
From Equation (5), we can calculate precisely the bias from more general cases, such as when each
successive component test in the CRS has better accuracy. For example, assume Pr(D = 1) = 0.10, and
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that the second test in the CRS improves over the first one in terms of specificity such that S1 = S2 = 0.6,
C1 = 0.94 and C2 = 0.96. From Equation (5), we can calculate that S∗

3 = 0.49.
Figures 3 and 4 summarize the trends in S∗

P and C∗
P, respectively, when there is conditional dependence

between the component tests of the CRS and the index test. The true disease prevalence is set at 0.10 in all
scenarios. Greater conditional dependence within disease negative subjects tends to result in decreasing
the amount of bias in S∗

P (Figure 3(a) vs. (b)). This can be explained by the observations of Table II
where we found that the specificity of the CRS decreases more slowly with each additional test in the
presence of conditional dependence. It should be noted that in other settings, it is also possible S∗

P will
be overestimated [19]. For instance, changing only Pr(Tj = 1|L3) = 0.90 and Pr(Tj = 1|L4) = 0, it can
be shown from Equation (11) that S∗

P will overestimated, tending to the limit of 0.916 with increasing
number of component tests.

Figure 4 shows that greater conditional dependence within disease negative will also impact C∗
P, result-

ing in an overestimate compared with CP (Figure 4(a) vs. (b)). The reason for the over-estimation can be
understood by examining Equation (12). We set Pr(Tj = 1|L4) < Pr(Tj = 1|Lk) k = 1, 2, 3, implying
that as the sensitivity of the component tests increases Pr(Tj = 0|L4) >> Pr(Tj = 0|Lk), k = 1, 2. There-
fore, P(TiP = 0|CRS = 0) is over-estimated because of the increasing influence of Pr(Tj = 0|L4) with
higher sensitivities. Similarly, greater conditional dependence within disease positive can also contribute
to overestimation in C∗

P (Figure 4(c) and (d)).
For example, suppose that when the CRS comprises three conditionally independent tests having

sensitivity S = 0.90 and specificity C = 0.95, and true disease prevalence is 0.10, S∗
P = 0.45 is con-

siderably lower than the true value of SP (Figure 2(a)) but C∗
P = 0.8998 ≈ CP (Figure 2(b)). If the

tests were conditionally dependent, the bias in S∗
P may be decreased (Figure 3); however, C∗

P will be an

Figure 3. Composite reference standards-based sensitivity (S∗
P) against sensitivity of component tests (upper

panels) and specificity of compoonent tests (lower panels) while assuming conditional dependence between all
tests. Each curve corresponds to a composite reference standards with a different number of component tests
2 ⩽ (P − 1) ⩽ 10. Pr(Tj = 1|L1) − Pr(Tj = 1|L2) = 0.1 in upper panel. Pr(Tj = 1|L3) − Pr(Tj = 1|L4) = 0.053 in

lower panel.
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Figure 4. Composite reference standards-based specificity (C∗
P) against sensitivity of component tests (upper

panels) and specificity of componente test (lower panels) while assuming conditional dependence between all
tests. Each curve corresponds to a CRS with a different number of component tests 2 ⩽ (P − 1) ⩽ 10. Pr(Tj =

1|L1) − Pr(Tj = 1|L2) = 0.1 in upper panel. Pr(Tj = 1|L3) − Pr(Tj = 1|L4) = 0.053 in lower panel.

overestimate (Figure 4). Although the percentage bias in C∗
P is seemingly small, it could translate

into a large underestimate of the false-positive percentage attributable to the index test in a low
prevalence setting.

5.2. Impact of increasing number of tests in the composite reference standards

For the scenarios considered, as the number of component tests in the CRS increases, S∗
P tends to be

increasingly underestimated (Figures 2 and 3). On the other hand, with increasing component tests,
C∗

P may either be estimated better provided the tests are conditionally independent or tends to become
overestimated if the tests are conditionally dependent (Figures 2 and 4).

As the number of component tests increases, more subjects will be classified by the CRS as having
the disease. Although in practice the number of component tests (P − 1) in the CRS will be finite and
relatively small, it is instructive to see what happens when the number of component tests increases
infinitely (P − 1 → ∞). Provided the set of conditions for achieving unbiased S∗

P and C∗
P listed under

Equations 5 and 6 are not met, we will observe the asymptotic results described below.
From Equation (7), it can be seen that as limP−1→∞ Pr(CRS = 1) = 1. Accordingly, under the assump-

tion of conditional independence, it can also be shown that limP−1→∞Pr(TP = 1|CRS = 1) = Pr(TP = 1)
= 0.18, which is substantially smaller than SP = 0.90. Paradoxically, limP−1→∞Pr(TP = 0|CRS =0) =
Pr(TP = 0|D = 0) = CP, meaning the CRS-based specificity of the index test converges to an unbiased
estimate in a situation where in fact it is not possible to estimate specificity, as the number of subjects
classified as disease negative converges to zero.
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A re-examination of Equation (5) helps understand the limiting behavior of S∗
P. It can be shown that

limP−1→∞{1 −
∏P−1

j=1 (1 − Pr(Tj = 1|D = d))} = 1. Therefore, for a sufficiently large number of com-

ponent tests, S∗
P = Pr(TP = 1|CRS = 1) ≈

∑1
d=0 Pr(TP = 1|D = d)Pr(D = d) = Pr(TP = 1),

implying that as the number of component tests increases their accuracy has decreasing influence on
the estimate of index test sensitivity. As we have chosen Cj > 1 − Sj, then

∏P−1
j=1 Pr(Tj = 0|D =

0) =
∏P−1

j=1 Cj = CP−1 decreases toward zero much more slowly than the term
∏P−1

j=1 Pr(Tj = 0|D =
1) =

∏P−1
j=1 (1 − Sj) = (1 − Sj)P−1. Therefore, all terms of Equation (6) except Pr(TP = 0|D = 0)

become negligible and C∗
P tends toward the true specificity CP as P − 1 increases (even though it cannot

be estimated).
When there is strong conditional dependence in the disease negative group, as the number of compo-

nent tests in the CRS increases, limP−1→∞{
∏P−1

j=1 (1 − Pr(Tj = 1|Lk))} = 0, k = 1, 2, 3, 4. However, the
limit converges much faster for k = 1, 2, 3 than for k = 4, hence the index test specificity C∗

P converges
to Pr(TP = 0|CRS = 0) ≈ Pr(TP = 0|L4) = 0.95, which is an over-estimate.

5.3. Returning to evaluation of a test for C. trachomatis infection

In the light of the preceding sections, we can see that the decline in Ŝ∗
PCRU and increase in Ĉ∗

PCRU seen in
Table I is to be expected with increasing number of component tests in the CRS. Given CULC is sup-
posed to have near perfect specificity but only moderate sensitivity, CULC positive patients are probably
a subset of disease positive patients with a higher organism load. Because the sensitivity of the PCR
test is also affected by the organism load, the sensitivities of the two tests are likely to be condition-
ally dependent. Thus, the CULC-based sensitivity estimate could be an over-estimate (if the conditional
dependence was sufficiently high) or an underestimate. The CULC-based specificity estimate is probably
an underestimate due to the imperfect sensitivity of CULC and may thus serve as a lower bound of the true
PCR specificity.

The CRSs in Table I may be constructed in practice with the expectation they improve over CULC
and will add insight, particularly by narrowing the range of uncertainty around the accuracy of the speci-
ficity of PCR. However, as we can see from our simulations, with each additional component test CRS,
sensitivity will improve but with a loss of specificity, given the component tests in the example in Table I
do not have perfect specificity. Therefore, we can expect that increasing P − 1 will probably result in
increasing underestimation of Ŝ∗

PCRU . Further, with the addition of NAATs to the CRS, we can expect
conditional dependence within disease negative of the CRS and the PCR test. Therefore, the Ĉ∗

PCRU val-
ues in Table I could be either underestimates or overestimates although it is unknown at what value of
P− 1 the direction of bias changes. Thus, although the definition of a CRS may be considered ‘transpar-
ent’, the resulting estimates are highly likely to be biased and are not easily interpretable even as lower
or upper bounds of the new test’s accuracy.

6. Other decision rules for defining a CRS

6.1. Composite reference standards based on the AND decision rule

While our focus so far has been on the OR rule motivated by the case of C. trachomatis testing, other
alternative compositions of the CRS exist. For other applications, the OR-rule may be seen as being too
liberal requiring only a single positive component test to classify a patient as true positive. At the other
extreme, a CRS based on the AND rule (denoted CRSa) would be very conservative requiring all tests to
be positive as follows

CRSa = I(T1,… ,TP−1) =
{

1 if min(T1,… ,TP−1) = 1

0 if min(T1,… ,TP−1) = 0,

As we will show below, the expressions for the accuracy of this CRS and for the estimated accuracy
of an index test with respect to this CRS are symmetric to the expressions defined previously in Section
3. By replacing CP by SP, SP by CP, Cj by Sj, Sj by Cj, and 1−Pr(D = 1) by Pr(D = 1) in Equations (3),
(4), (5), and (6), we can obtain the corresponding expressions for the case when all tests are conditionally
independent. The sensitivity of CRSa is given by
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SCRSa
= Pr(CRSa = 1|D = 1) = Pr(min(T1,… ,TP−1) = 1|D = 1)
= Pr(T1 = 1,… ,TP−1 = 1|D = 1)

=
P−1∏
j=1

Pr
(
Tj = 1|D = 1

)
=

P−1∏
j=1

Sj,

(13)

the specificity of CRSa is given by

CCRSa
= Pr(CRSa = 0|D = 0) = Pr(min(T1,… ,TP−1) = 0|D = 0)
= 1 − Pr(min(T1,… ,TP−1) = 1|D = 0) = 1 − Pr(T1 = 1,… ,TP−1 = 1|D = 1)

= 1 −
P−1∏
j=1

(1 − Pr(Tj = 0|D = 0)) = 1 −
P−1∏
j=1

(1 − Cj),
(14)

the sensitivity of index test P with respect to CRSa is given by

S∗
Pa = Pr(TP = 1|CRSa = 1)

=
∑1

d=0 Pr(TP = 1|D = d)Pr(D = d)
∏P−1

j=1 Pr(Tj = 1|D = d)∑1
d=0 Pr(D = d)

∏P−1
j=1 Pr(Tj = 1|D = d)

,
(15)

and the specificity of index test P with respect to CRSa is given by

C∗
Pa = Pr(TP = 0|CRSa = 0)

=

∑1
d=0 Pr(TP = 0|D = d)

{
1 −

∏P−1
j=1

(
1 − Pr

(
Tj = 0|D = d

))}
Pr(D = d)∑1

d=0

{
1 −

∏P−1
j=1

(
1 − Pr

(
Tj = 0|D = d

))}
Pr(D = d)

.
(16)

Because of the symmetry, SCRSa
decreases, and CCRSa

increases as the number of component tests
becomes large. If we were to use an AND decision rule for the situation in Table II (i.e. each component
tests having S = 0.6 and C = 0.9), SCRSa

would drop from 0.36 with 2 component tests to 0.0060 with 10
component tests. Correspondingly, CCRSa

would increase from 0.9975 to 1. The expressions in Section 3.2
can similarly be converted into equivalent expressions for CRSa.

6.2. Composite reference standards based on the ‘at least two positive tests’ decision rule

The OR and AND rules can be seen as the boundaries of a family of decision rules, which are defined by
a positivity criterion of the form ‘at least m positive component tests’ as follows

CRSm = I(T1,… ,TP−1) =

{
1 if

∑P−1
j=1 Tj ⩾ m

0 if
∑P−1

j=1 Tj < m,

for 1 < m < P− 1. We can see that if m = 1 we have the OR-decision rule and if m = P− 1 the AND-
decision rule. We will examine in some detail the rule that requires at least two positive tests to classify
a patient as positive, that is, when m = 2. CRS2 is defined as follows

CRS2 = I(T1,… ,TP−1) =

{
1 if

∑P−1
j=1 Tj ⩾ 2

0 if
∑P−1

j=1 Tj < 2,
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Assuming conditional independence, the sensitivity of CRS2 is given by

SCRS2
= Pr(CRS2 = 1|D = 1) = Pr

(
P−1∑
j=1

Tj ⩾ 2
|||||| D = 1

)

= 1 −
P−1∏
j=1

(
1 − Pr

(
Tj = 1|D = 1

))
−

P−1∑
l=1

Pr
(
Tl = 1|D = 1

)∏
l≠j

(
1 − Pr

(
Tj = 1|D = 1

))
= 1 −

P−1∏
j=1

(
1 − Sj

)
−

P−1∑
l=1

Sl

∏
l≠j

(
1 − Sj

)
,

(17)

and the specificity of the CRS2 is given by

CCRS2
= Pr(CRS2 = 0|D = 0) = Pr

(
P−1∑
j=1

Tj < 2
|||||| D = 0

)

=
P−1∏
j=1

Pr
(
Tj = 0|D = 0

)
+

P−1∑
l=1

(1 − Pr(Tl = 0|D = 0))
∏
l≠j

Pr(Tj = 0|D = 0)

=
P−1∏
j=1

Cj +
P−1∑
l=1

(1 − Cl)
∏
l≠j

Cj.

(18)

The sensitivity of index test P with respect to the CRS2 is given by

S∗
P2 = Pr(TP = 1|CRS2 = 1)

=
SPPr(D = 1)SCRS2

+ (1 − CP)(1 − Pr(D = 1))(1 − CCRS2
)

Pr(D = 1)SCRS2
+ (1 − Pr(D = 1))(1 − CCRS2

)
,

(19)

and the specificity of index test P with respect to the CRS2 is given by

C∗
P2 = Pr(TP = 0|CRS2 = 0)

=
(1 − SP)Pr(D = 1)(1 − SCRS2

) + CP(1 − Pr(D = 1))CCRS2

Pr(D = 1)(1 − SCRS2
) + (1 − Pr(D = 1))CCRS2

.
(20)

As with the other decision rules defined previously, the sensitivity of CRS2 depends only on the compo-
nent tests’ sensitivities, while the specificity of CRS2 depends only on the component tests’ specificities.
Similar to the OR rule, as we increase the number of component tests, CRS2’s sensitivity will increase,
while its specificity will decline, although the change is at a slower pace. For the settings in Table II, that
is, each component test having S = 0.60 and C = 0.95, we have SCRS2 = 0.36 and CCRS2 = 0.9975. Note
that this happens to be identical to the AND rule for the particular case of two component tests. If we
increase the number of component tests to 10, then we would have SCRS2 = 0.9983 and CCRS2 = 0.9139,
respectively.

6.3. Comparison of index test accuracy estimates based on different composite reference standards
decision rules

Figure 5 compares the CRS-based estimates of sensitivity (S∗
P) and specificity (C∗

P) based on three differ-
ent CRS decision rules: the OR rule (black lines), the AND rule (red lines), and the ‘at least two positive
tests’ rule (blue lines). In each color, the solid and dashed lines correspond to a CRS based on 3 and 10
component tests, respectively. The true values of the index test accuracy are SP = 0.9 and CP = 0.9. In all
plots, we see that the OR and AND rules define boundary estimates, and the ‘at least two positive tests’
rule is intermediate between them. The most bias in S∗

P (left panel) is observed under the OR decision
rule (black curve), while the least bias can be seen under the AND rule (red curve), irrespective of the
number of component tests used. By symmetry, the AND rule will create the most bias in C∗

P (right panel)
while the OR decision rule will create the least bias, among the family of rules defined in Section 6.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. A comparison of estimated sensitivity (S∗
P) and estimated specificity (C∗

P) based on three different
decision rules versus accuracy of the component tests and disease prevalence, while all tests are conditionally
independent (true parameter values are SP = 0.9 and CP = 0.9 in all cases). Black lines = OR decision rule, blue
line = at least two positive tests decision rule, red = AND decision rule. Solid line = CRS with three component
tests, dashed line = CRS with 10 component tests. Upper panel (a and b): Pr(D = 1) = 0.10, C = 0.95. Middle

panel (c and d): Pr(D = 1) = 0.10, S = 0.60. Lower panel (e and f): C = 0.95, S = 0.60.

7. Discussion

We studied in detail the performance of a CRS based on an OR decision rule. This type of CRS has been
used in diagnostic research studies to improve the sensitivity in identifying the disease of interest over any
single imperfect reference test. We showed that even if all component tests have excellent performance,
for example, with 0.90 sensitivity and 0.95 specificity, the resulting estimates of index test accuracy
may be highly biased. In practice, the magnitude and direction of the biases will be difficult to quantify
precisely as they depend on the unknown accuracy of the component tests, the disease prevalence and
the degree of conditional dependence between the tests.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1454–1470
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The definition of the CRS does not involve the test under evaluation. Therefore, it is perceived as being
‘independent’ of the test under evaluation [6, 8]. However, as we have shown, conditional dependence
between component and index tests could arise due to their common dependence on a variable besides
the true disease status. Intuitively, one can imagine that if the new test and the CRS systematically make
the same errors (i.e., are conditionally dependent), the accuracy of the new test will be over-estimated.
Further, we showed that CRS-based estimates of sensitivity and specificity are dependent on the true
unknown disease prevalence. Therefore, the same CRS applied in different prevalence settings to evaluate
the same index test would give different estimates of sensitivity and specificity, unlike the true sensitivity
and specificity of the index test which are mathematically independent of disease prevalence.

Our simulation settings were inspired by those encountered in C. trachomatis testing, but the results
may be generalized to other settings. It should be noted that other settings may result in different biases,
for example, using the same sensitivities and specificities for the component tests as we have, but increas-
ing the prevalence to > 0.50 could result in a greater magnitude of bias in S∗

P compared with C∗
P, and

greater impact of conditional dependence within disease positive.
The sensitivity of a CRS based on the OR rule will increase with an increase in the number of compo-

nent tests, although this will be at the cost of a loss of specificity unless all tests have perfect specificity.
In the limiting case when the number of component tests tends to infinity, we found the paradoxical result
that the estimated prevalence tends to 100%, while the CRS-based specificity tends to the true value of
the specificity. Further, the estimated sensitivity tends to the probability of a positive test, suggesting
the properties of the component tests in the CRS play no role in its estimation. Thus, as more informa-
tion becomes available due to results of multiple tests being gathered, the performance of the CRS may
worsen. This is in contrast to the expected performance of a well-defined statistical method. The apparent
paradoxcanbeexplainedby the fact that theCRSis overlysimplistic in its construction. It ignores information
on inter-relations between the component tests and reduces their joint results to a dichotomous result.

It has been argued that the CRS is clinically meaningful because it represents a clinical diagnosis and
not the true disease status, which is impossible to determine in the absence of a gold-standard [20]. In a
clinical setting, a physician faced with results of multiple imperfect tests may use them in a composite
decision rule after weighing the risks of missed diagnosis versus overdiagnosis. But it is questionable
whether the same composite rule should be applied to the evaluation of a new test or estimation of disease
prevalence with no attempt to correct for the false-positive or false-negative errors in the CRS. It is rather
like requiring that the new test replicate the errors of the CRS. Further, clinical diagnosis is more complex
than a simple composite decision rule, taking into consideration additional variables, for example disease
history, and the particular combination of positive and negative results.

Based on our findings, we recommend that a CRS based on combining results of NAATs via an OR or
AND decision rule (or other variations) should not be used for estimating the accuracy of new C. traco-
matis tests as follows: (i) the component tests are not guaranteed to have perfect sensitivity or specificity;
(ii) this approach would ignore the conditional dependence between the tests; (iii) this approach would
ignore the inter-relation between the different component tests and the index test.

The problem of evaluating a new test or estimating disease prevalence in the absence of a gold-standard
reference remains a challenging one. CRSs have been promoted as a better approach than alternatives
like latent class models [6, 20]. Yet, as we have shown, CRSs based on an any-positive (or all positive
rule) suffer from a number problems that have not been acknowledged previously. Other CRSs based
on more complex any-positive rules have also been found to result in bias [16]. We conclude that future
research in this area should be directed towards approaches based on realistic statistical modeling of
the observed data. Such models should take into account: (i) the inter-relations between all component
tests and the index test; (ii) model conditional dependence between all tests (component and index); (iii)
model disease prevalence; and (iv) incorporate external information if available, thus making complete
use of the collected data while acknowledging all the different parameters (prevalence and individual test
accuracies) that may come into play [29–31]. While there are acknowledged challenges with estimating
more complex statistical models [31, 32], improving our understanding of them is necessary to make
optimal use of the data gathered.
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